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NOMENCLATURE

A vector is denoted with an over-arrow (e.g., the position vector Ftab), and the column matrix rep-
resentation of a vector, or any other type of column matrix, is represented with an underbar (e.g., t,).
Points in the system are designated by lowercase letters, cio the position vector rab in the above example
is read "the position from point a to point b." Coordinate frames are designated by capital letters (e.g.,
XA is the x unit vector in the A system). Coordinate-frame rotation rates are represented as 4F/I,
which is read as "the rotation rate of frame F relative to frame I." Rotation vectors are always resolved
in the frame of the first subscript. Nondimensional quantities are represented with an overbar and are
nondimensionalized by the blade mass, rotor radius, and nominal rotor rotational rate.The sine and
cosine functions are abbreviated to So and Co, where the subscript is the argument. In the following
list, the abbreviation DOF is used for degrees of freedom.

a blade-section lift-curve slope
asnd speed of sound
aTR tail-rotor lift-curve slope
aOTS, boTs, aTS, bTS tail-surface dynamic pressure loss angles
b blade-section semichord
bTR tail-rotor semichord
CDo, CDI , CD2, CD3 , CD4, CD5 tail-surface-drag coefficient values at break angles
CF., CFy, CF. fuselage-mount damping constants
CLS, CL1, CL2  tail-surface-lift coefficient values at break angles
CT, Cm, CL main-rotor thrust, pitch, and roll coefficients
CTS tail-surface dynamic pressure loss factor
Ca, CY, Cz hinge damping constants
COTR, CITR tail-rotor drag function constants
do, dI, d2  blade-section drag function constants
e, f first and second offsets
eTR tail-rotor flapping-hinge offset
f, f, • fixed-bOF array and derivatives

feq fixed equations
Fx, Fy, Fz applied-forces components at mount in F system
g gravity constant
h shaft length
irAeo apparent-mass-term flag
if((nif) fixed DOF indices (number selected)
ifeq (nfq) fixed equation indices (number selected)

ij(ni,) first-derivative lixed DOF indices (number selected)
iy(nil.) second-derivative fixed DOF indices (numb-" selected)

fl(ni,,) fixed control indices (number selected)
iy(nij) feedback fixed-output indices (number selected)

auxiliarv fixed-output indices (number selected)
ix(nix) feedback X-output indices (number selected)
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ik(ni.) auxiliary X-output indices (number selected)
i I (ni1) first-order variable/equation indices (number selected)
IbTR tail-rotor flap inertia about flapping hinge

IB blade inertia matrix
IF fuselage inertia matrix
IR rotor-hub inertia matrix
jr(njr) rotor DOF/equation indices (number selected)
jM(njý) first-derivative rotor DOF indices (number selected)
jw(nj,) feedback-rotor output indic.es (number selected)
j., (njp,) auxiliary-rotor output indices (number selected)
jo(nj,) rotor control indices (number selected)
K(nK) rotor control blade indices (number selected)
KbTR tail-rotor flap-spring constant
KF,, Kpy, KJF. mount spring constants
Kx, Ky, Kz hinge spring constants
KITR tail-rotor tangent of 63
LI, MI inflow matrices
MB blade mass
MBTR tail-rotor blade mass
AIF fuselage mass
IA/R rotor-hub mass
m0 , n I blade-section moment function constants
nAbld number of blade accelerometer measurements
hAfus number of fuselage accelerometer measurements
nb number of blades
nbTR number of blades in tail rotor
nf number of fixed DOF

"1MLIN number of harmonics in periodic system linear coefficient matrices
nhTRA&I number of harmonics in trim blade equilibrium solution
n?, number of rotor blade DOF
n,9 number of empennage surfaces
nu• number of fixed inputs
nuA n,uC nupnusj nuG number of controls in blocks A, C, P, S, and G
nw number of rotor outputs
'nA, , nx p, nxs, nxa number of states in blocks A, C, P, S, and G
ny number of fixed outputs
nyA nycnyp, nyS nyG number of outputs in blocks A, C, P, S, and G
nc,,,,, I namd number of divisions in middle/end region of a for surface downwash

table
nfl3id,, end number of divisions in middle/end region of /3 for surface downwash

table
no number of rotor blade inputs
nI number of augmented states
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Strim Fourier coefficients matrix [(2nhlTRMf + 1) by nr] of the blade
DOF

rl , r2 integration limits in downwash table calculation
rI Z, r blade DOF arrays and derivatives
rCeq rotor equations
R rotor radius
RTR tail-rotor radius

RT = [RmRmi Rm.] T  translation DOF of fuselage

S1  reference area of fuselage aerodynamic forces
STa, BLa, WLa aerodynamic force position a in station-buttline-waterline coordinate

frame
STc, BLc, WLc fuselage center-of-mass position c
STm, BLm, WLm translational DOF position m
STr, BLr, WLr tail-rotor position
STs, BLs, WLs tail-surface position
STt, BLt, IFLt shaft tilt position
STS tail-surface reference area
tfINr final time of response

TRBRK, TRLOSS tail-rotor loss function constants
Two, TWX blade linear twist constants
LL fixed input array
XA blade-section torsion axis distance behind 1/4 chord
Xb, Yb! Zb blade center-of-gravity position components in B system
xbTR tail-rotor center of mass from hinge offset
Xlx2 aerodynamic forces integrated from x1 to x2 along -;B
Xeq first-order equations

2X1 first-order augmented state array

QDI, OD2 , aD3 , aD4  tail-surface-drag break angles
aQLs, O Lt, aL2  tail-surface-lift break angles

OkLOBND' I LO, CfUP, OUPBND downwash table a ranges

1OLOBND) I3LO, fOUP, /-UPBND downwash table 0 ranges

/3k, (, Ok, flap, lag, and torsion blade DOF
/Op, (p hinge offset angles
ADW nearest a to wake layer for surface downwash table calculations

Al, A! finite-difference perturbation for fixed DOF and derivative
AZ Ar, Afinite difference perturbation for rotor DOF and derivative
ALL finite-difference perturbation for fixed inputs
AX.1 finite-difference perturbation for augmented states
AO finite-difference perturbation for rotor-blade inputs
2 rotor inputs
Os eO shaft tilt in pitch (positive back) and roll (positive right)
Ot,rR tail-.rotor twist per unit length
Ox" , Oz zero moment angles at mount
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-= [ o, oy, Oz]T fuselage Euler angles

A inflow at main rotor
advance ratio

PA air density
Px, py tail-rotor orientation angles
oa, o. tail-surface orientation angles

rotor DOF, Ok = 4b + 2k-l 9 7rnb-

Wf rotor fundamental frequency
Q• nominal rotor rotation rate

QTR tail-rotor rotation rate

For position vector 9-:

r' time derivative
'r time derivative of a vector relative to vector frame

9' nondimensional time derivative
9 (F) a vector resolved in a particular frame

special matrix form of a vector, i.e.,

- rii 0 ri
ry -rx 0
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SUMMARY

A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-
restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows
several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to
calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using a three-
state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of
freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail
rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim,
linearization, and time-integration operations are described and can be applied to a subset of the model
in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by
comparing its results with those of other analytical and experimental studies. This publication presents
the results of research completed in November 1989.

INTRODUCTION

Future requirements for helicopter flight performance place greater emphasis on high-bandwidth
flight-control systems than current requirements. Low-order rigid-body models of helicopter systems can
be used successfully to design feedback control systems, but these models impose bandwidth limitations
on the controller, making them unsuitable for the design and evaluation of high-bandwidth systems
(ref. 1). To meet the new requirements, higher order helicopter models must be used in the design of
the flight-control systems. The higher order effects of primary interest are those of the rotor dynamics
and the rotor inflow. In addition to capturing the blade-flap and lag dynamics, the effect of torsional
dynamics on the control design problem needs to be understood. This last item is relevent to rotor
designs using hingeless and bearingless rotors and to advanced concepts, such as servo-flap coitrol,
which require torsionally soft rotor blades (ref. 2).

This report documents a higher order helicopter mathematical model created to fill these needs. The
helicopter model is described in detail in the next section. The rotor consists of rigid blades with flap,
lag, torsion, and pitch motions; and with linear hinge springs and dampers. This gives the model the
rotor dynamics of interest and allows for approximate modeling of hingeless rotor systems. The flap (f),
lag (1), torsion (t), and pitch (p) hinge motions can have the order flpt, fplt, pflt, lfpt, lpft, or plft (only
flpt and lfpt are currently available), and two hinge offsets are available to model various articulated
configurations. The blade-section aerodynamics are linear, and the quasi-steady Greenberg model is used
(ref. 3), Unsteady inflow effects are included using the three-state nonlinear Pitt/Peters dynamic inflow
model (ref. 4). An rpm degree of freedom (DOF) of the main rotor is also available, making analysis
of engine/rotor interaction possible. The rigid fuselage model has six degrees of freedom and includes
an equivalent-drag-area aerodynamic model, a tail-rotor model, and an empennage-surface model. The
empennage-surface models have main-rotor downwash effects that are calculated from the flat-wake
model described in chapter 2 of reference 5, The tail rotor is the quasi-static flapping model described
in reference 6. For greater flexibility, the spring/damper model, the blade-section aerodynamic model,
and the fuselage aerodynamic model can be replaced with user-defined models.

Following the description of the model is the Gperations section, which details the operations that
are performed on the model. There are three operations: trim, linearization, and time-integration. Trim



places the helicopter system in some user-defined flight condition by satisfying the system equations of
motion. After trimming, the model may be linearized about the trim condition, or the model may be
initialized in the trim condition and then time-integrated. Linearization uses nonrotating rotor coordinates
through a multiblade coordinate transformation (MBCT) (ref. 7). In forward flight, the periodic system
matrices can be extracted from this linearization process. The time-integration uses rotating blade
coordinates and allows for arbitrary inputs to the model controls. Additionally, the integration process
has been cast in a general block form, allowing the introduction of user-specified actuator, sensor,
feedback, and precompensator dynamics to the system.

In the Results section, a preliminary validation of the helicopter model is made by comparing
results with those from other analytical and experimental studies. The rotor model results are compared
with trimmed rotor-response results, from reference 8, of an isolated rotor. Rotor/fuselage results are
compared with the experimental frequency and damping data presented in reference 9. The full helicopter
model is validated by comparing trim and time-history data extracted from flight data on a UH-60A
helicopter (ref. 10). Additionally, a comparison with the quasi-static eight-state linearized model from
the GEN HEL program (refs. 11,12) is made.

HELICOPTER EQUATIONS OF MOTION

Fuselage

The fuselage is modeled as a rigid body whose motion is defined by the six degrees of freedom
shown in figure 1. The fuselage coordinate frame F is body fixed, with its origin at point mn. The
location of point m is chosen by the user. The body translational motion is defined by the components
of the inertial position vector 'in, and body rotation is defined by the Euler angles. Other relevant points
on the body are shown in figure 2. The positions of these points are chosen by the user in the body-fixed
coordinate frame defined by the station, the buttline, and the waterline. The forces and moments at
m result from mounting restraints, which can be set to simulate any mounting condition, such as in a
wind-tunnel test. Point c is the center of mass of the fuselage, where inertial and gravitational forces
are resolved, and point a is where fuselage aerodynamic forces are applied. The ns empennage surfaces
produce resultant forces at the sj points, and the resultant tail-rotor force is at point r. There are "Ay.,
points designated as yn, where accelerations are output measurements. Point It is the attachment point
of the main-rotor hub, which can be set at tilt angles about point t. These tilt angles are defined by
the transformation, shown in figure 3, which tips the hub coordinate frame H by constant pitch and roll
angles, 0s and 09s.

The equations of motion for the fuselage are formed by summing the forces created by the main
rotor, fuselage inertia and gravity, fuselage aerodynamics, the fuselage mount, the tail rotor, and the tail
surfaces. This gives the vector equation

QHr+ QIG +QA +QAI + QR+ZQSj =0 (1)
.1

Summing the respective moments about point -n gives

LH+LIG-+ LA+ M+LR+LS -=0 (2)
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where

"LH " JH + (5Fnt + rth) X QH (3)

Lrw = J,+ (Fine X QG (4)

LA = JA + (raX QA) (5)

LR = JR + (rmr XQ•R) (6)

- na

LS= fj+ xý,q Q Sj) (7)

The final fuselage equations are resolved such that they correspond to the fuselage generalized coordi-
nates. That is, if a Lagrangian approach had been used, the same fuselage equations would have resulted.
This resolution of the equations facilitates the extraction of the system mass matrix, which is discussed
in a subsequent section. The definition of the equations and their location in the fuselage-equation
vector f-eq are

feq(1) = moments about !F (8)
feq( 2 ) = Z moments about *0, (9)

feq( 3 ) = Z moments about z0, (10)

feq (4) = forces in JZi direction (11)

feq(5) = Z forces in 91 direction (12)

feq( 6 ) = Z forces in ij direction (13)

Using the position vectors and coordinate frames as defined, the velocities and accelerations can
be determined. At the main rotor hub, the angular velocity and acceleration are given by

L4I1 = UHIF + OF11 (14)
WFI W / (15)

•H/I = w'H/1 = • H/F + •H/I X 'H/F + (16)

Taking advantage of the constant components in the position vectors, the velocities at selected points
are

rit = rim + WF/I X t•int (17)

='ih = tit + ±JH/I X rth (18)

r =sj = rim q"+ XF/I X "nsj (19)
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L .im + F/I X rim (20)

ria = 1hn + WF/I X r-ma (21)

ic = ri + WF/I X 411C (22)

rjy+ = Fr + XF 41,1Y (23)

and the acclerations at selected points become

tit = rimb + W F/I x a'rt + _F/I X (PF/I X 7,,1.) (24.)

rit = tt + W/'H/I X It + /I x (H/I x h)(25)

f#ie ='i, + W' F/ x i',tc + WF/I x (F/1 X i'-,,) (26)

ri., = 'imn +w'F/I >< 'my, + /)F// X (cF1, X (27)

The forces and moments of the fuselage are discussed separately, beginning with the inertial and
gravity effects. At the fuselage center of gravity, the inertial force and moment vectors are

QIG M F(ri- + g2) (28)

' -- IF ' u)IF1/- FII X ( 7 F' OF/I) (29)

where the inertia tensor is defined in the F system.

The fuselage aerodynamic effects are based in the wind-axis coordinate frame W defined in figure 4.
The velocity of the air relative to point a is

Va (30)

which also defines the direction of the ,V component of the wind-axis frame. The angles (f and Of
are defined from the relative velocity as

cef=tan- 1(a:) - !r <0 F 7r (31)

Ofl 'tan- I - Y J (32)
( : - 2  ( -

The fuselage aerodynamic force and moment are

QA = D=4v + Y14j + L.j 1  = H2Sf (CDfi + CY)W ±JV C+'LfwV) (33)

JA = -R&t.j ± AW- N. "- l l (-Cp1 :h. + =2•fw -11 Cj1) (34)

4



which can be converted to the F frame via the transformation TFWV, which is defined in figure 4. The
force and moment coefficients are functions of (if and/3f, but the default fuselage-aerodynamics sets
all force coefficients to zero except CDf, which is set to unity, making the fuselage reference area Sf
the equivalentL drag area.

The fuselage mount moments are modeled as linear nonorthogonal springs, and the mount forces
are treated as given quantities. These forces can be used during trim to satisfy a constraint condition,
such as setting a certain amount of thrust. The parameters defining the mount effects can be set to zero
for free-flight analysis. The force and moment expressions for the mount are given by

LAI (PV~ - N~SJ ; + (MCX+ M~zso9c~) lIE + (-AI, 1 ¾; + 'AzCqxcoj ~ (35)

where

NX = -KF,, (Ox - 00) - Ct-,0: (36)

AIy = -IKFY (0-1) - OYo) - CFUOy (37)

MI1 = -K&', (OZ - Ozo) - CFZO,• (38)

QM= F1I' + Fý11 + Fz•i (39)

The measurement outputs from the fuselage are acceleration, velocity, and angular rates. The na,,.
accelerometer outputs are expressed as

11(J) = "l - gui) j = 1,2...,n. (40)

f. = fxj4 + Jyj YF + fzj F (41)

where the direction of the measurement is selected through the components of fj. The velocity of the
fuselage center of mass is resolved in the fuselage fixed frame and is available as a measurement, as
are the fuselage angular rates. The components of the velocity and angular rate vectors are stored in y
according to

y ( ,,,, + 1) -- 'i. X (42)

y(n'Af,' 4. 3) j.(44)

y (nAf, + 4) = '(45)

y ('hAJ,,,, + 5) = Opjir ' F (46)

Y (nAf It, + 6) = •1:1'/I iy (47)
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Main Rotor

Fixed to the main rotor are nb coordinate frames, one for each blade. Figure 5 shows the rotor
coordinate frame R for the kth blade, in which several additional blade coordinate frames are defined.
"The additional frames are shown in figure 6. The first hinge is offset a distance e from the hub center,
and point c corresponds to the origin of the link coordinate frame L. The second hinge is offset a
distance f from point r. The origin of blade coordinate frame B is at point f and is fixed to the blade.
The significant points on the blade are b, at the blade center of gravity, and x, at a distan," - .x along
the .iB axis. Also on the blade are .4a points designated 'Wn, which locate the blade aL erometer
measurements.

The hinge sequences that define the orientation of the blade coordinate frames can be divided into
two groups . The first group is flap-lag-pitch-torsion (fOpt), flap-pitch-tag-torsion (fplt), and pitch-flap-
lag-torsion (pflt), in all of which the flap motion precedes the lag. The second group places lag before
flap in lag-flap-pitch-torsion (lfpt), lag-pitch-flap-torsion (lpft), and pitch-lag-flap-torsion (plft) hinge
sequences. Only the flpt and lfpt sequences are available; they are defined in figures 7 and 8. An
intermediate coordinate frame P, which is not shown in figure 6, is included in these figures. Frame
P allows the introduction of hinge effects such as precone and 53. The angle /3, in figures 7 and 8 is
the precone angle, and (p is a cant in the flap hinge that geometrically introduces the 63 effect. By
definition, the variable 63 is not an Euler angle (ref. 13), but it is related to the cant Euler angle by
tan 63 = - tan (p cos j3 for the fOpt syster' and tan 63 = - tan ((p + ck.) cos 3p for the lfpt system. The

remaining hinge sequences are defined such that for the flap-before-lag sequences, /-k rotates about the
Scoordinates axis -np; (k, about -^L; and Ok, about ,iB. For the lag-before-flap sequences, 4k rotates
about the axis 51p; itk, about -hL; and ek, about ,?B. The sequence of rotations of the blade angles is
summarized in table 1. The items in the flpt row and R to P column are read as follows: starting in
frame R, rotate through an angle of /3p about the negative 'OR axis; then rotate through an angle of (,
about the ",, axis, to the P system. Each element of the table is read similarly.

The forces on the main rotor are shown in figure 9 with only the kth blade depicted. A rigid body
representing the rotor hub mass contributes only inertia to the system, The link between points e and f
is massless, contributing no inertial forces to the system. Each blade contributes inertial, gravitational,
and aerodynamic forces and moments, which are related to the loads at hinges f and c by

f=- (FIG + fA) = -FT (48)

f= - (-IG + M.OI) = -IMT (49)

Fe = (50)

II =Al1 + ref x F1  (51)

The vectors FT and M1IT are the sums of the blade inertial, gravitational, and aerodynamic forces and
moments at point f. The hub forces and moments of equations (I) and (2) for the main rotor are then

Q11 =PIG+ F, (fT)k (52)
k=I

6
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,fH ýI+ E l(rh + 'C f) X PT 'ýII k(53)
k=1

This gives the rotor equation

feq( 7 ) = Tq + J"II Z-R = moment about Zi? (54)

where Tq is the main-rotor torque. For the flpt, fplt, and pflt systems, the flap, lag, and torsion equations
are

r e q(k,I)[ le +MVT +rie f XPT] P (55)

req(k, 2 ) = [A71 + + MT] L] (56)

req (k, 3) = [~+ Aýh] B(57)

For the lfpt, lpft, and pift systems, these equations are

req(k, 1) =- [1 +M~ (58

req(k, 2) = [tf+ + IFT] + e x P] - (59)

req(k, 3) = [Aff + AfT] ' iB (60)

These rotor blade equations have been written such that they are equal to the A3k, (k, and Ok equations
that would result from using a Lagrangian approach. The total aerodynamic forces and moments at the
hub center are

nb

SýFA E VA ( k), (61)
k=l
nb

.= z [MA+ (rhee.) X F]P4 (62)

k=1

The angular velocities and accelerations are

OR/I = WR/H + wHII (63)

wP/t = WPIR + WR/I (64)

4L/1 = •WL/P + W-P/f (65)

OB/I = WB/L + WL/ 1  (66)

WRlI = LtRI= I w' RIH + lRIt x jRIH + HI r (67)

Op/J = w'P/lr = P/R + 4P/I x WP/R + nR/1 (68)

W:L/I = w'L/l = W'L/P +WL/I X cfL/P + OP/i (69)

OB/I = ±IB/l W I BIL + jB/l X OB/L + WL/I (70)

7



For the blade aerodynamic calculations, the velocity of point x results from

e= rih + jRII X -rhe (71)

fr i = re + wL/I X ief (72)

rix ='rif + WB/I X Tfx (73)

For the mass matrix calculation, the velocity of the blade center of mass is

rib = rif + LýB/I X rib (74)

The accelerations of the blade center of mass, the points Wn, and the point x along •:B result from

i'e= r'th +JwR/I R1 x he +wOR/I X (WRIIX r 7he) (75)

'f= rie ++ WL /I X fe ++L/I × (•iIe X rfL) (76)

r'ib = fif + W'B/I X r'fb + 'B/I X ('TB/I × •fb) (77)

iw = fif + ' B/r x 'ifw + uVB/I X ('B/1 X (78)

ýix = ;i! + LB/.r X ix + +uxB × (X /I x rx)(79)

The rotor hub center of mass is at point h, and the rotor hub orientation is referenced to the k = 1
rotor coordinate system. The inertial and gravitational effect of the rotor hub is

PIG =MR (-rijh+g ) (80)

and the inertial moment is

= - [7R - w'R/I + WR/I X (7R - OR1I)] (81)

Likewise, for each blade, the inertial and gravitational force and moment are

FPIG =MB (-4 b + 01) (82)

MIG = - [7B .•,-B/ + WB/I X (I.B OB/I)] + i-*f b X (83)

where the moment is about point f.

Blade hinge-spring restraining moments are of two types. The first type is nonorthogonal, and for
the flpt, fplt, and pflt sequences the moments are

-Ale 9P = --Ky/k - CAv3k (84)

Alf iL = -Kz'k - Cz~k (85)

MIf. B = -BKxek - Cx'k (86)

8



For the lfpt, lpft, and plft sequences, the nonorthogonal moments are

-MN ' YL = -KyA Cv3k (87)

M'e - = -I\:4k -Czk (88)

f. • B = -Kxzk - Cxk (89)

The second type of spring restraint is orthogonal and is used to approximate hingeless rotor-blade
systems. These orthogonal moments are valid only for (1) no second offset (f = 0), (2) no cant angle
(Cp = 0), and (3) with the pitch inboard or outboard of the flap and lag degrees of freedom. For the
fipt and pflt sequences, the moments are

= ~e=[-ic (-Ck'S~k + OkCCL-CA) - Cw (-ýkSA + 4kC~kCk)] 'P

+ [KMy (--Ok + OkSCk) - Cy (-4~ + kS~k)1 PP

+ [-.(CkC¢,k + OkC 3k) - C-_ ((k'&Ck + 4CC,.kSIk)] •P (90)

For the lfpt and plft sequences, the moments are

Kit1j = ile= [_KX (Okc + OkC/kCck) - Cx (/kS~j + 4XOC/3k I ýý

+ [-Ky (-Okcc. + OkCA&SCk) - cy (-)koCk + 4kcOAsJk)] ^

+ [-K- (4 + OkkSo3j - cz (4 k + kSOJ3) 'P (91)

The total blade aerodynamic effects are found by integrating the sectional aerodynamic forces and

moments along the span according to

F ]4 fA dx (92)

M, = [2 [(x XB) x f. + r,.] dx (93)

where

fA = fpc' + hic ̂ C (94)

rA = mi•,xC (95)

The integrations are carried out using Gaussian quadrature numerical integration. Blade-section forces
are resolved in a chord coordinate frame C shown in figure 10, which is rotated from the blade coordinate
frame B by a geometric twist. The linear twist function is defined by

OT(x) = Twx- + Twc (96)
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The components of the sectional forces and moments are expressed in terms of the angular velocity and
acceleration of the chord section and of the components of the relative velocity and acceleration of the
air mass at the origin of the C frame. The latter two are

= VG + i-rix (97)

Ac = VG - rix (98)

where the vectorAi is the induced air velocity whose derivative has been ignored in the air-mass ac-
celeration. The induced air velocity results from the dynamic inflow model, which is described in a
subsequent section.

The sectional aerodynamic model is based on quasi-steady Greenberg theory, which is a Theodorsen
theory modified to account for lead-lag motions (refs. 3,14). The lift and moment about the torsion axis
are given by

L = pAab [VQ + P-b'iAero] (99)

' -PAab [(Xab + VQ+ (xabP - V b 2&) 'iA,.o] (100)

where

Q = (h + vc) - (Xab- a(101)

P = (h + v4) Xaba (102)

The variable iAero is a switch to remove the apparent mass effects, which can be ignored when the
order of magnitude of the mass of the airfoil section is much greater than the order of magnitude of the
mass of the air it occupies (ref. 14, chap. 5). Drag and additional moments due to camber are added by

D =do + dl aef I +d 2 a (103)

Alcam m0 + MrI C~efI (104)

Figure 11 shows the application of the sectional aerodynamic model in forward and reverse flow con-
ditions. The variables in the Greenberg theory are interpreted as in reference 15, where the quantity
h + Va is interpreted as the normal air velocity at the torsion axis. The derivative of this quan-
tity is then the derivative of the Z•c component of the air velocity V'c, which can be extracted from

9 = Vic' + WC/I X Vc.

Blade measurements are stored in w in the following manner. For the kth blade, the nA,,
acclerometer outputs are given by

tv [k + 14b (n - 1)] = (nin- g~z) . I. n = 1,2, ... ,nAb•d (105)
II n

"bn= bz,i5B + byjB + bzzB (106)
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where the direction of the measurement is selected through the vector b9, Blade moments at the hinges
are also in w. They are given by the following expressions when flap is before lag:

N(T + t f X (107)

tv[ + flb (nA I- 1)] = MT' iL (108)

W k + nb (nAbld MT+2)] = MT (109)

and by the following expressions when lag is before flap:

w [k + bnAbi = MT L (110)

w k + nb (nAbd +1')I = (NIT + i:f XFT) p (111)

w [k+nb(nA + 2)1 =JT B (112)

Inflow

The rotor inflow is modeled using the three-state nonlinear Pitt/Peters model of reference 4, which
is applied in the actuator-disk coordinate frame A shown in figure 12. This frame is tipped to the left
by the sine of the flapping angle and tipped forward by the cosine of the flapping angle. The velocity
and acceleration of the air relative to the hub center are

Vh =VG rih (113)

"Ah = VG-rih (114)

The advance ratio, the free-stream inflow, and the total average inflow can be found by using the velocity
vectors; they are

¢ / (= +2 (Vh -/A) (115)

VhzA (116)

A = Afs + AO (117)

where the total average inflow A is the sum of the free-stream inflow plus the constant induced-inflow
component, which is one state of the dynamic inflow model. The inflow vector for the blade aerodynamic
calculation, in terms of the inflow states, is

A = A = (AO + Aj-SR ' + AlCfCV) -^,-1 (118)



where A0, A1,9, and Al. are the three inflow states that define the inflow in the A system. These inflow
states are governed by the first-order inflow equations

rxeq(l) 1 0I( vl Cxeq (2) = #Li I III + l -t C (119)
Xeq(3) *t I I CM

The v's in equation (119) are coefficients that define the inflow in the same way that the A's define the
inflow in equation (118). However, the v's define the inflow in the D system, which is aligned with the
velocity in the disk plane. The i, coefficients and the A coefficients are related by

O= AO (120)

VlS A1s8Ch + AlcSfh (121)

VIC= AIcCh + AlSS3h (122)
, A0o = - 0  (123)

= C-h + Sh + (-AIS S +'\IcC' h) (124)

VIC- L= -Soh -"L (AIcSO4 + (125)

where the side-slip angle and rate are

\-Vh" ýAtan- ( _ (126)

*h (Vh - iA) ( ý*A) -. h ^A) (V. 'PA) (127)

The thrust, roll, and pitch coefficients in equation (119) are given, in terms of the main-rotor aerodynamic
forces and moments, by

CT = AR4 2  (128)
CL = , Sh + (§ItA 'XA) C'•h Moft" (129)

7TPARSp 2

m " - 'l A A) S~ h Jo1i (130)
12rpA R5,q2
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The matrices for the Pitt/Peters model are

1 15ff l•

L- 0 0 (131)

15 1-S -45'_--T V TT-E;-I' 0 (Js

mo(mass) 0 0

MA =[ -16 o (132)

So -16

where

I.2 +A•(AX+Ao0)
V = 2(133)

VT = p2 + \2 (134)

as = tan- (135)

The element m0 takes on two possible values. One value corres onds to a zero-inflow boundary
condition at the hub center, mo(0) = 121; the other value, mo( 1) = •, does not enforce this condition.

Tall Surfaces

Up to five tail surfaces are available (the subscript representing each surface will be omitted in
the following discussion); they are oriented as in figure 13. Each surface can be tipped away from the
horizontal by an angle ax, and the pitch incidence can be adjusted through ay to define the zero point
of the input iTS. The velocity of the air relative to the surface is

"Vs = VG + dTs - Pis (136)

where !TS is the downwash from the main rotor. Each tail surface has its own downwush table that is
a function of the angles at which the air strikes the hub center, the magnitude-of the air velocity, and
the thrust coefficient (i.e., dTS = CTfDWTS (atL, ov, V'L ) Z^). The moment J, at the surface is zero,
but the force at the tail surface is

Qs 2PA I8 1I2 STS{[CL(az) Sa, -CD(az)Ca,] s

+ [-CL (az) Ca. - CD (as) So,] ^s}qIosSR (137)
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where, for forward flow, a, and SR are defined by

QZ = for-, < ot <5
SR = 1 J- -

and, for reverse flow, they are defined by
= (138)

SR = 0.8 7  -

a - = c + 7r for-7r< <-"as
SR = 0.8 f

where

a~s tan- I . 1 (139)

The lift and drag coefficients are functions of a, and are defined by specifying the break points shown in
figures 14 and 15, The dynamic pressure loss due to fuselage blockage is approximated by the functions

qVoSS = 1 (V 1 - (140)

"loss CTSex{ 4(af -aSOTS) b(!'rs 2  (141)

When the angles cef and if3 are at aoTs and bOTs, respectively, the loss is a maximum.

Tall Rotor

The tail-rotor orientation is shown in figure 16; the Euler angles px and py have the same sequence
as the tail-surface orientation. The relative velocity of the air is given by

Vi. = VG + dTR - r"i (142)

and the downwash dTTR, like the tail surface downwash, is interpolated from a table. From the figure,
the advance ratio and total inflow are

P.TR = K T + (143)
RTRPTR

ATR = IYTR tan ar + CTTR AfSTR + CTTRR (144)

The wind orientation angles with respect to the hub are defined as

/3r= tan- (I - 'OT (145)
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ar= tan- Ir'ZT (146)

The force and moment for the hub from the tail rotor are

QR = (-HTRCIr - YTRSO,) ýT + (-HTRS/r + YTRCO,) OT - TTRfblk.ST (147)

S= (LTRC O, - M TRS O,) iT + (LTR S , + M TRCI3 ) OT + Q TR ^T (148)

All components of the force and moment expressions result from the quasi-static flapping model of
reference 6, and are functions of the total inflow and the blade harmonic components. The inflow
comes from equation (144) and the blade harmonics result from

([k]a - f = 0 (149)

where g is a vector containing the collective, the first sine, and the first cosine components of the blade
flapping motion, The precise definitions of the matrices and the rotor forces and moments are given in
appendix C of reference 6. In the present report the total inflow is defined such that positive inflow
is down through the rotor, whereas in reference 6 total inflow is defined such that positive inflow is
up through the rotor. Both equations (144) and (149) are algebraic nonlinear equations and are solved
using the Newton method, Once acceptable convergence is reached, the values of a and ATR can be
used in the force and moment equations, The loss factor fblk in equation (147) is included in order to
model the interference effect between the rotor and the surface to which it is mounted. Loss factor fblk
is defined as follows:

fblk (TRIO$$ - 1) 1 (T-'YTR + 1 PTR • TRbrk (150)T.Rbrk)

fbik = 1 PTR > TRbrk (151)

The variable TRIOs, is the percentage of thrust available at zero advance ratio, and TRbrk is the advance
ratio at which fblk becomes unity and remains unity at advance ratios above TRbrk.

Main-Rotor Downwash

The downwash of the main rotor on the tail surfaces and tail rotor is calculated using the flat-wake
model described in detail in chapter 2 of reference 5. The wake model assumes a rotor in edgewise
flow, as shown in figure 17; the coordinate frame is that of reference 5. The downwash velocity is
determined using the Biot-Savart law, assuming cycloidal vortex filaments shedding from the disk plane.
This flat-wake assumption is considered valid in forward flight when V/tiR > 1.63v/'T. The x, V,
and z components of the velocity are calculated from

IifT AI)j d 'p j=x, y, z (152)
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where Aij results from

A = Ao• (, 1, 91, i) (153)

A'y= A-y I1 1 t

(154)

z~O =+ (155)

The functions in equations (153) through (155) are pretabulated and depend on the nondimensional
distance from the hub center * and the components of the point of interest, through

91 zi (156)S= -- ; i = -- ; •'i = - 16

A typical example of each of these functions is shown in figure 18 for gI = 0.6. The functions need to
be tabulated only at the positive values of 11,, g, and 11 because of the symmetric and antisymmetric
properties of the functions. A summary of the odd and even behavior of the functions is shown in
table 2 along with the equation numbers and figure numbers that define the functions in reference 5.
The downwash components are expressed in terms of the function r, which is the average circulation
over a rotor revolution at a radial distance from the center of the rotor. As in appendix C of reference 16,
this function is approximated as

r(P) = 1"0 (1 - T)ý2 (157)

r =207rCT (158)

where the constant 1o is a function of the thrust coefficient. This relationship between the circulation
and the thrust coefficient comes from evaluating

ITr2 [I j2-o dT ' dO>. (159)

where

I2 -x j rdT dO =PAr(P)P (160)
T' JO :=

which results from the Joukowsky lifting law.

The wake model can be used to generate a downwash table for each tail surface and tail rotor. The
wake is oriented along the relative air velocity vector in the ýv - Ov plane, shown in figure 19. The
S-frame is the tail-surface frame, but the tail-rotor frame T can be substituted for it. The velocity at the
hub is

Vv= VG + A\O^A - inh (161)
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and the orientation angles are

cev = tan- Iv. iH (162)

•-V= tan- ( £'H) (163)

For the given tail surface (tail rotor) fixed in the S (T) frame, downwash values fDWvTs (fDWTR) at

different combinations of ce, Ov, and fI"Il are calculated and stored in a table. These values are the
downwash velocities in the is (iT) direction divided by CT. This division of the downwash velocities
by CT is based on equations (152) through (158), from which the proportionality of CT to the downwash
velocity can be deduced. For the tail rotor, the downwash vector is

XTR = CTfDWTR(LQv, Ov, IV'lj) iT (164)

and for each tail surface the downwash vector is

dTS = CTfDWs Ts(Qv, 30v,I I4VI1) ZS (165)

The fDw functions are linearly interpolated from values tabulated from a given set of av, /v, and Vv.

The points that make up the interpolation tables are selected in the following manner. The 14vjj's
are chosen directly by selecting the number nvDw and the particular values. The av's are chosen by
selecting a set of points aPT and defining Uv = QPT + oevO; similarly, the O3v's are chosen by selecting
a set of points OPT and defining 1v = OPT + ov0. The quantities av0 and 0-vO are the orientation angles
that center the wake on the given surface (i.e., when Vv is parallel to i%, ). The points aPT are chosen
by setting the boundary angles 'LOBN9D < c'LO < -ADW < 0 < ADW < CUp < aUPBND, and the
points OPT are chosen by setting the boundary angles OLOBND < /LO < 0 < OUP < OUPBND' These
boundary angles are defined for the condition in which the fiat wake is centered on the given surface. For
the a boundaries, the number of divisions in the end regions, [aLOBND, IaLO] and [aUp,aUp. ND],

is selected through ncnd, and the number of divisions in the middle regions, [LLO, -ADW and

[ADW, •UP], is selected through namid. The value ADW is a small value and precludes evaluation
of the downwash on the waxke layer, where the vortex singularities are present. For the i3 boundaries,

the number of divisions in the end regions, [(3LOBND' 3LO] and [1OrP, /UPBNDI' is selected through

n*,nd, and the number of divisions in the middle regions, [/PLO, 0] and [0, /3up], is selected through

Mass Matrix

The equations of motion are formed numerically, making the model described in this report implicit.

Because of this, the system mass matrix is not readily available as it would be if the equations were
derived explicitly. Allowing for different hinge sequences precludes the explicit calculation of the mass
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matrix, since each of the many hinge sequences would require a separate calculation. To avoid this, the
mass matrix is implicitly calculated with the condition that no acceleration-dependent applied forces,
such as the apparent mass terms in blade-section aerodynamics, are present in the system, Such forces
contribute to the mass matrix, making its extraction more difficult. It is well known from analytical
dynamics that the form of the kinetic energy is

Tkij = T2 + T, + To = T [Aqq(q2, t)] 4 + C(q, t)T4 + 1r(q, t) (166)

where [Mqq] is the mass matrix of the system and I represents the system generalized coordinates. In
the model presented,

T= 1, [ 2...... 13?b, , (I 4...I(nb 1 01) 2i* ...1 0%1OXIy 9 iOz Rm,1 R 1 Rrn j (167)

and the quadratic contribution T2 to the kinetic energy is given by
711

T2 = T2!udeLage + T2potor + E (T2blaOd)k (168)
k=l

For the fuselage, the velocity and angular rate are given by

WF,

W(F) WF) 1 [Z) l 0 (169)

le T:', + Pine :.F/,,,I =/, { (170)

RF

which is a re-expression of equation (22) using matrix notation instead of vector notation, The elements
of the column matrix R are the time-derivatives of the three translational degrees of freedom describing
the motion of point m on the fuselage; the elements of • are the time-derivatives of the three Euler
angles of the fuselage, For the coordinate system F defining the fuselage motion,

01 -s o

c•FII = 0 Co, '50 COY1 (171)

0 -S CO, c hco

The velocity and angular rate give the T12 contribution to the kinetic energy from the fuselage

T2f { ) eM F RF + W1F411'1{ (172)
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Likewise, for the rotor hub mass, the matrix representation of the velocity and angular rate is

(Ri) (R) +-,&lg zI T l O: / (173)
R = -F/ + HIF + /ff = TRPrF.I_+ R/F LR0 'RI F

WI?

(F)= + = - (174)

RH

where

0R/F RI[F' (175)

Equations (173) and (174) arise from equations (14), (18), and (63). As with the fuselage, the T2
contribution to the kinetic energy from the rotor hub is

1 [MI{R}RR + WVIRVR] [W] (176)

The same approach is used to find the kinetic energy for the kth blade. For the kth blade the angular
rate is

(B) (RBI + WL/R + W-B/L = TBF&FF/16 + TBR'R/FV' + TBL'L/Ra-L/R + WBniABIL

rI e

I= TBF'FI 0:T lR'TIF: TBL'L/R ,I/L (177)

wsk ,£IL J
and from equation (74) the velocity of the center of mass becomes

ý(R) = .(R) + (H) W
= Lih +-he -R/I
=(L) + P -(L) (178)

.(B) = (B) .(B) .(B) J
-ib -if + -fb --B// =1Ir3WF/I i TBI AI2LJR/F MIF: L/Iý "f',b L'B/J! V,

"~R _ ... . U- LIR
R3k itB/L
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where

MI = TBLf (L +i. TELB

A12 = MITLR + TBR(rhe

MW3 = M2TRF + TB(F )

Since no particular hinge sequence has been stipulated, the aL/R and AB/L are generic, representing
the generalized coordinates in the transformation indicated in the subscripts. For the fipt, fplt, and pflt
hinge sequences, the terms are defined as

SC,'
6.L/R = -Co, /3p = WL/IRL/R (179)

0

WB/L = S0k+Ok 0 { } = WB/LaB/R (180)

SCok+Ok 0

and for the Ifpt, lpft, and plft hinge sequences, the terms are defined as

0'

-L [- 0 1k - WL/taL/R (181)

ýBI/L [Ck+Okp 01 } =LIRABR (182)

Sok +4, Ccp 0 pk

Using the velocity and angular rate, the T2 contribution to the kinetic energy from the kth blade becomes

ST

(PT41ae) =12 [1lBBBkRB ýBJBýBkj l (183)
a-LR aIL/R

,B/nL JItB/L

For the inflow model, the mass matrix associated with the first-order states xT = [Ao, Ais, AIc] can be

easily extracted using equation (119) and equations (123) through (125). The mass matrix for the inflow
model is

ALIDI = "LIM [ 0 0 ] (184)

S-3h CAh
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If there are no acceleration-dependent applied forces, the total mass matrix of the system can then be
related to the equations of motion by

-[0 HD IJ1 + g feq ( xii,. ) (185)

The matrix Mqq is formed using the T2 terms in equation (168), by adding the contributions of the
corresponding fuselage, rotor hub, and blade elements. The equations included in :rq are the rotor-blade
equations, equations (55) through (57) or equations (58) through (60); the equations included in Leq are
the fuselage equations, equations (8) through (13) and equation (54). Finally, the equations included in
zq are the inflow equations, equations (119). The reader will note that these equations have been cast
such that they are identical to equations that would result from a Lagrangian formulation. Thus, the
mass matrix calculation is compatible with the equations of motion and allows the relationships

-Mqq = f Jq (186)

-MDI = •-[•eq] (187)

rerq 0?l,0c,
Leq 1 (188)

Multiblade Coordinate Transformation

For rotor systems with three or more blades, a multiblade coordinate transformation (MBCT) is
available to transform the rotor rotating coordinates to nonrotating coordinates (ref. 7). For a set of
rotating variables, each of which represents the same physical quantity for each blade,

_R = [x1, x2, x3,.. (189)

The nonrotating representation for an even number of blades is

XN= [z0,xd,asXlc, 2s,...] (190)

The generic variable x0 is the collective, while xd is the differential, which is not present if the number
of blades is odd. The Xns terms are the nth sine variables, while the Xnc terms are the nth cosine
variables. An example is the flap degree of freedom, for which IR is a vector whose components are
flapping angles. The transformation between variables is linear and time-varying, so the transformation
from rotating to nonrotating systems is given by

XN = TVRIR (191)

iN = TNVR I R + TNRIXR (192)

IVN = TNRIR + 2 TNRRi-R + TNR.1R (193)
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and the transformation from nonrotating to rotating systems is

_. = TRNIN (194)

tR = TRNAN + TRN-N (195)

iR = TR N-K + 2TNRX-N + TNRX-N (196)

The form of the transformation matrix for models with an even number of blades is

1 -1 Sp,1 C1P1 S2¢1 C2Vl
1 1 S0 2 C- 2 S2102

TRN= 1 -1 ',5V3 C03  '. (197)
1 1 SIP4

and its inverse is given by

1 1 1 1 .
-1 1 -1 1

2S, 1  2S, 2  2SV)3
T- 1  2C¢, 2C4,2  2C4 3  (198)R = TNR =b 2S2 1,1  2S2 02

2C 2¢p

The kk terms are the azimuth positions of the blades:

Pk = 01 -+ (k- l)2r k = 1,2,...,nb (199)nb

These positions all have the same time derivatives. For models with odd numbers of blades, the second
column of equation (197) and the second row of equation (198) are not present.

OPERATIONS

Basic Setup

A driving routine performs four basic operations on the helicopter mathematical model: initial-
ization, trim, linearization, and integration (fig. 20). Initialization sets the basic data that define the
helicopter configuration and conveys to the driving routine all the data necessary to operate on the
model. The trim operation sets the helicopter configuration into some prescribed steady condition. A
harmonic balance technique is used, which simultaneously balances the fuselage forces and moments
and finds the rotor-blade equilibrium solution. Once the model is trimmed, two possibilities are avail-
able. One is linearization, in which a two-point difference formula is used to linearize the model about
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the trim condition. The other possibility is time integration, which gives the system time response,
initialized in trim condition, for given control inputs.

Each operation uses a subset of the model, whose general structure is shown in figure 21 and
represented in equation form as follows:

E(x [= { } = E [ 1 [)] f 0 (200)
Xeq

_ =(201)

XT= [~LT L T'LTT LTICJ] (202)

Variables and controls are represented in a single vector X, which acts as the inut to the model, whereas
the equations and measured quantities are represented in a single vector ET - ([ITT], which acts
as the output. Both the inputs and the outputs can be categorized into three types: rotor-blade, fixed,
and augmented. The rotor-blade inputs/outputs are items associated with the rotating coordinate system,
such as the flap degrees of freedom or the blade pitch; the fixed inputs/outputs are items associated with
the nonrotating system, such as fuselage degrees of freedom or fuselage acceleration measurements, The
augmented inputs/outputs are associated with any additional first-order equations necessary to complete
the model. The structure in figure 21 allows the use of rotating or nonrotating inputs and outputs.
The variables are transformed by the multiblade coordinate transformation; the choice of the coordinate
system depends on the particular operation. This basic setup is general and the operations can work on
any model set up in this mannezr.

For the model described in the Helicopter Equations of Motion section, the rotor-blade degrees of
freedom in the rotating system are

JT = [l1, 0212..., (I1 (21,..., 441, ,...] (203)

When using nonrotating coordinates, the vector r is defined according to equation (190) for each degree
of freedom. For a model with an even number of blades the rotor degrees of freedom in the nonrotating
system are

LT = [30, 3 d,s,31s)O3 c,... , (d) (Is, (c, ... , 00i Od, 01 ,1c,...] (204)

For a model with an odd number of blades, the differential coordinates are not present. Using nonrotating
coordinates for the input variables requires that the flag ISNROT = 1, which transforms the nonrotating
coordinates to the rotating system via equations (194) through (196),

The rotor-blade controls in the rotating system are

= [ 1,j2,...,61,(2,... ,01, 2,...] (205)
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and as with the rotor-blade variables, the function of the flag IINROT is to transform 0 to the rotating
system if these inputs are given in the nonrotating system. For a model with an even number of blades,
the rotor-blade controls in the nonrotating system are

_!T [o, 0 ,td..., o 60 i, 6 s, 61c)..., 0, O, •is,O o ,...1 (206)

For a model with an odd number of blades, the differential coordinates are not present. The fixed
variables are the fuselage degrees of freedom and the rotor azimuth angle

LT = [OXOyOz,Rm,, Rny, Rm, V)] (207)

and the augmented variables are the three dynamic inflow coefficients

Z [A= o A1I, A•1• ] (208)

The fixed controls u are

J = [OOTR, Tqvg9, vgy, vg,,iT5,'iT 2 ,..., iTSns] (209)

The center block of figure 21 is the model, described in the previous section, that calculates the helicopter
equations of motion. The equations in rq are the rotor-blade equations, equations (55) through (57)
or equations (58) through (60), and the equations in ,-q are the fuselage equations, equations (8)
through (13) and equation (54), The equations in Zq are the inflow equations, equations (119). The
vector y is defined by equations (40) through (47), and w is defined by equation (105) and equations (107)
through (112). The vector W is in the rotating frame but can be transformed to the nonrotating frame
by using the flag IONROT.

Initialization

Initialization performs two basic functions, one of which is to set up any data not given in X
that define the model. These data are the physical parameters defining the model that was previously
described; they are summarized in table 3. The main-rotor downwash tables are either generated and
stored in files or read in from previously generated files. The second function of initialization is to
transfer basic system data to the driver so that subsequent operations can be carried out on the model.
These data, summarized in table 4, are primarily size data of the full model. Included in the table are
the current values of these data for the model described in the Helicopter Equations of Motion section
of this report.

Trim

The trim operation places the helicopter in the desired flight confi'liration by using a harmonic
balance technique that is described in reference 8, chapter 3. The method casts the helicopter equations in
an algebraic form by defining the rotor-blade variables as a Fourier series. The coefficients of this series
expansion, along with the fixed and augmented state variables and inputs, are adjusted to force the rotor-
blade, fuselage, and augmented state equations to zero. The rotor-blade equations are also expressed as
a Fourier series, so that forcing the rotor blade equations to zero means forcing the coefficients of this
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series expansion to zero. It is assumed that the helicopter main rotor has a constant rotation rate ý = Q
and that the rotor-blade controls are expressed in the nonrotating frame (i.e., IINROT = 1). All blades
are assumed identical, and information from only one blade, expressed in terms of rotating coordinates
(i.e., ISNROT = 0), is needed in the trim. An IMSL nonlinear algebraic equation solver, ZSPOW, is
used to find the solution to the following equation (ref. 17):

E() =X (210)

The vector of inputs, V, is defined as

L[ii(n)] n= 1,2,.ni

n = 1,2,.., n 1

[ lIt(n)] n = 1, 2,...,nij

- {K(nf)+nb[j(U)- 1]} n= 1,2,,,.,n; (211)

j fK(n) +nb [j9(rtj,) - 1]} 1T1= 1, 2,...nj

reo [n, j,(I)] n = 1,2,..., (2nhTRvl + 1)

rco [n, jr(fnij)] n-= 1,2,..., (2nhTRk! + 1)

which is composed of fixed, augmented, and rotor-blade inputs. (Matrices are stacked by columns
when represented in column vectors,) The blade variables are represented as coefficients of the Fourier
expansion,

flhTRM

r[k+nb(j-l)] =rco(1,j)+ • ro(2n,j)cos(nIk) +'rco(2n+ l,j)sin(nr k) (212)
n=l

The variable k is the blade number, and j is the blade degree of freedom (e.g., j = 2 is the lead-lag;
see eq. (203)). For the model of this report, the coefficients are represented in matrix form as

•o ¢o €o

re= : : (213)

I'lhTRA c

L 01hTRA28
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The elements of V are adjusted by the equation solver after the user chooses determining indices. For
example, the choice of hif = 2 with if(1) = 2 and if(2) = 3 directs the solver to adjust angles 6y and
62 to find the trim. Given the information in V, the input vector X can be formed and the model can
be evaluated. The resulting equations can then be used to form F, which is defined as

rfo[n,jr(l)] n = 1,2,..., (2 nhTRAt + 1)

F(V) = rfo [n,Jr(njr)] n = 1,2,. .. , (2 nh1TRRM + 1) (214)
0 frr/QLf [if (n)] dt ni = 1, 2,... nfeq0 F f6 -1eq e q '

S,• f6 -Xzeq [i I(n)] w I(n) dt n = 1, 2,...nil

where

rfo(1,j) =rj rq[I +flb(i- 1)])dt
S27r/Sl

rf0 (2,j) = Jo 1 req[1 +nb(j - 1)] cos(Qt)dt

rf0 (3,j) = -Q 1 27r / l re D +rLb(j - 1)] sin(Qt)dt (215)

ff 2=r/ [1 + nbG - 1)] cos(n1TR Qt)dt
rf °(2nhTRAlt J) 1-7f R.e

rfO(2nhTR + 1,)j) =r r, [1 + nb(J - 1)] sin(nL2TRAIflt)dt

These equation are the Fourier coefficients of the first blade equation, where

nhtTRM

req [k + b(J - 1)] = rfo(l,j) + E rf 0 (2n, j) cos(nVk) + rpfG(2 7t + l,j) sin(nok) (216)
n=l

The choice of nhTRt determines the number of rotor coefficients that are adjusted to force the same
number of coefficients of the blade equations to zero. The fixed and augmented equations are averaged
over one rotor revolution in equation (214) to zero only the constant harmonics of these equations. A
summary of the inputs that control the trim procedure is shown in table 5. Indices and their number (in
parentheses) are selected to choose the adjustable variables and the equations that are to be satisfied. If
an adjustable variable is set to a value, the value acts as an initial condition to the solver. If the variable
is not adjusted by the solver, it remains at the set value throughout the trim. An example of the use of
this feature would be to trim the model at a constant climb rate.

Integration

The tirie response of the system shown in figure 22 to given inputs up can be obtained by numerical
integration. Since it is difficult to generalize helicopter control/actuator models, these systems have
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been broadly defined as first-order equations that can be defined by the user. The P block in figure 22
represents precompensation, and the A block is any actuator/mixer dynamics; feedback dynamics are
represented in the C block and sensor dynamics are represented in the S block, which has the restriction
that the output of S cannot explicitly depend on u. The helicopter model is represented in block G with
nonrotating rotor inputs (IINROT = 1) and rotating-blade degrees of freedom and outputs (ISNROT = 0,
IONROT = 0). By default, P and A are identity feedthrough and C and S are zero, giving the response
of the open-loop helicopter model G. Any subset of the model represented by equation (200) can be
integrated, where the state of G is defined by

f{n+nb[j.(mrn)-l]} n = 1, 2,.01b; n=1,2,...,L'[i/(Mn)] M -- 1,2, ... ,snij

IG = 1x[iI(m)] m = 1,2, .nil (217)
r_.{n+nb[Jr(m) - III n = 1, 2,.,,rb; m = 1,2,...nir
f [if (,n,)] m = 1, 2, . ,nf

As in the the trim procedure, the selection of the variables and equations is done by choosing indices.
If the rotor degree of freedom is not selected, a constant rotor rate is used, by default, in the integration
of the model (i.e., . = MO. The inputs are defined as

r 0{K(n) +nb[jO(m) - l]} n = 1,2,...,nb; b 7= 1,2,.. .,nj(
Ihjiu(m)] m = 1,2,..., niu

The feedback outputs are

n f+ nbEUtu(771) - III 7- 1, 2,.,.,r; m = 1 1. n

VG = = iy(m m 1,2,... ,nij (219)

SX [ix(m)] m = ,2,.. ,nx

and the auxilary outputs are

f v {n + nb[jD4m) - I]} -an 1,2,, 11b in = 1, 2,, ,

Im= 1,2,...-,.ni11  (220)

X [ik(m)] rn= 1,2, ,.n,

The equations integrated are

Le, {n + rtb[jiP(?) -l]} )n = 1,2,...,n; 1l,...,nj,,
EG = •q[iy(77)1 M = 1, 2,.,nk (221)

X eq [iI(M)l m = 1,2,...,niJ

From equation (200) the form of the subsystem that is integrated is

- M; (XG,±uc) dG + (G (G,UG)= f-.G (dG,xG,IUG) (222)
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where

ff{n + nb (n2)- I]} In = 1, 2 ,. n,; m - 1,2,.. .,nji

dG= f (m) m= 1,2,..., ni (223)

1 ii[iIm)I ?n = 1,2, ... ni

Two methods are available for extracting the mass matrix MG. One method uses equation (222)
directly, in which it is clear that the jth column of MiG is .G, with dG equal to zero except for the
jth element set to unity, minus FG(Q, xG, uG). If M1G is of dimension nMG = nbnj, + nil + nil,
one evaluation of the model is necessary to get FG(O, XG,.UC), and nNa additional evaluations of the
model are necessary to get MG. This approach always works; however, it requires many evaluations
of the model and thus is inefficient. The other method is to use the corresponding elements from the
mass matrix, which is calculated in and passed from the model, to form the submatrix MIG. Once MG
is available, the equation

ýG = t [n + nbj (m)- 1]n = 1,2 ,...,nb; m= 1,2,...,n j, (224)

% [il(m)l m = 1,2,.. ,nij
can be found; this is the expected form of block G in figure 22.

If the helicopter model is trimmed, the inputs and outputs of G are available at the initial time. The
initial state xG0, initial input u%0 , and initial output YGo can be used to extract the initial conditions
of the blocks A, C, P, and S (fig. 22) as follows. It is assumed that XA = =bC = ýP = ýS = 0 and
it is required that nuG = nuv, which gives an equal number of equations and unknowns. With these
conditions, a nonlinear equation f(•.) = 0 can be set up, where f and vZ are defined as in figure 23.
The variables on the left-hand side of the figure are adjusted until the variables on the right-hand side
are forced to zero. The values at which this occurs are the initial conditions of the system of figure 22.
The solution is extracted with the modified Newton method used in the trim procedure.

Whh the initial conditions available, the entire system of figure 22 is integrated according to the flow
diagram in figure 24. The S block is evaluated to get its output ys using t, which is not necessarily
the the correct value at the given time. However, the output of S is specified to be independent of
,S, so the output value is correct, With this input to block C, the values on the right-hand side of the
figure can be evaluated from the given information on the left-hand side of the figure. With this setup,
and the input up defined by the user, the integration is carried out using the predictor-corrector method
In the subroutine DVERK from the IMSL package (tef. 17). A summary of the integration inputs is
shown in table 6. As in the trim, the variables to be integrated are selected through indices. The input
is Cp = ._po + Aip, where Uo0 is determined in the trim. The term A&,Lp is the input perturbation
about this trim.

Linearization

After trim, it is also possible to linearize a subset of the helicopter model (e.g., block G of fig. 22)
in the nonrotating system (ISNROT = 1, IINROT 1 1, and IONROT = 1). Linearization is done about
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the trim solution using the two-point finite-difference formula,

Of _ (Xi + Axi) _ L (Xj - Axj) 2)
8f ~ (225)

Oxj -2Axj

The partial-derivative matrix of the helicopter model is defined in figure 25; the rows and columns are
selected in the same way as in the integration process. For any given time, the partial-derivative matrix
can be calculated and the linear system can be evaluated according to the following equation:

[c00)[ D(t)J (226)

L[EN~a'P+R] [EAI&'Q+U1

The harmonics of the linear model matrix can be found using

So = 27r/uw1
27r/10 S(t)dt (227)

7 r f •/ s(t) cos(nwft)dt (228)

S11 = !-" f2*r/f S(t) sin(nwft)dt (229)

These integrals are evaluated numerically using a Gaussian quadrature procedure. The periodic model
matrix is then expressible as

S(D)A B + 1n Dnc cos(nuwft)+ CA1 DnsB sin(flwf t) (230)Co Do] Ci c Dne CI Jil

Since nonrotuting coordinates are used, the helicopter model matrix will be constant when the model is
in hover. In forward flight, the model matrix has periodic coefficients, which become more important as
the forward flight speed is increased. The fundamental frequency Wf depends on the number of blades
in the helicopter system. If nb is odd then wf = nbf, whereas if it is even, Wf = 4. A summary of
the linearization procedure inputs is given in table 7.

RESULTS

The model results are compared with other experimental and analytical results as a preliminary
validation. The first comparison is with blade-equilibrium responses in trim, of a flap-lag-torsion rotor
model used in reference 8. Unlike the model described in the present report, the equations in reference 8
were symbolically generated out to their final form. An omission in the reverse-flow region was
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discovered in the model of reference 8: the model did not account for the sign change in Xub in its
aerodynamic formulation (see fig. 11). This error is introduced into the model described herein so the
comparison would be valid. The parameters of the model, presented in table 8, are of a four-bladed,
soft in-plane rotor with a lead-lag frequency of 0.7/rev. The rotor trim is calculated with six harmonics
(n~hTRhI = 6) in each blade degree of freedom, and the fuselage mass is chosen to give a weight
coefficient of 0.005. The flap, lag, and torsion equations are satisfied for the blade equilibrium while
simultaneously satisfying the roll-moment, pitch-moment, x-force, and :-force equations. The trimmed
blade-equilihrium response in flap, lag, and torsion is shown in figure 26. Three response curves are
presented for each blade degree of freedom: (1) a curve from the model from reference 8, which has
an erroneous reverse-flow formulation; (2) a curve from the model of the present report, which uses the
same reverse-flow formulation as that used in reference 8; and (3) a curve from the model of the present
report, which uses what is believed to be the correct interpretation of the aerodynamic formulation
in the reverse-flow region. The two models with the incorrect reverse-flow interpretation show close
agreement, which serves to verify the analysis. The alternative reverse-flow interpretation greatly affects
the torsion response of the system, although its effect on the flap and lag responses is still very small,

The results from the linearized helicopter model are compared with experimental hover results from
reference 9, The experimental setup consisted of a three-bladed rotor mounted on a mast that allowed
pitch and roll motions. Each blade had metal plates with notches, which acted as concentrated hinge
springs to closely simulate the flap-lag rigid-blade approximation. Torsion springs on the body mount of
the experimental rotor were adjusted to simulate an air-resonance condition, The parameters necessary
to model this system are given in table 9. Measurements were made of the damping and frequencies
of the system modes, and it is to these data that a correlation is made, Figure 27 shows the modal
frequencies and the lead-lag regressing damping plotted against the rotor rotation rate, with zero blade
pitch. The simulated air-resonance condition occurs when the body roll-mode frequency nears that of
the lead-lag regressing mode, which is near a rotor rotational rate of 700 rpm. Excellent correlation with
the experimental data is seen in this condition. The body pitch and roll damping at zero blade pitch is
shown in figure 28, Good correlation between experiment and theory is also seen here, although the
model tends to overpredict the damping at the higher rotor rates. The lead-lag regressing damping at
90 blade pitch is shown in figure 29; again, the model does a good job of predicting the damping in the
resonance condition. Detailed cross-plots of the lead-lag regressing damping with respect to the blade
pitch are shown in figure 30. Good agreement is seen between experiment and theory, although the
damping tends to fall short at high and negative blade-pitch angles at the higher rotor rates, Figure 31
shows cross-plots of the body damping at 650 rpm; good agreement in pitch is seen at positive blade-
pitch angles. The body roll damping tends to be overpredicted, getting worse at higher blade-pitch
angles.

The main-rotor wake model used to calculate the downwash on the empennage surfaces is tested
by correlating it with experimental results from reference 5, page 77, A correlation is done in the
reference and is also done in the present report by using the flat-wake model described in the Main
Rotor Downwash subsection. Unlike the model used in reference 5, the model described herein assumes
a circulation distribution. In reference 5, a blade-element approach is used to find the circulation
distribution. The integral in equation (152) is evaluated by using a Gaussian quadrature integration
method along with linearly interpolated values from the pretabulated functions, Figure 32 shows the
vertical nondimensional downwash at various azimuths at 0.1 R below the rotor, The experimental rotor,
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with 100 blade twist, is immersed in edgewise flow at CT = 0.006. Using the flat-wake model gives
good correlation results; the asymmetry of the downwash at the 900 and 2700 azimuth positions is
captured.

With the rotoi and downwash models validated, it is now possible to validate the full helicopter
model. The model is configured to simulate a UH-60A helicopter in order to compare model responses
with the flight-test data that are available in references 10 and 18. Reference 10 presents a validation
of the real-time model presented in reference 11, which is also known as the GEN HEL model. Ref-
erence 18 presents a validation of an updated version of the GEN HEL model, which is referred to as
the Ames GEN HEL model. In the model of the UH-60A used in this report, all automatic controls
are off (SAS, PBA, etc.). The fuselage aerodynamic representation in the model was generated from
curve-fitted equations of the sta'lc aerodynamic characteristics. The exact equations are given in ref-
erence 19, pages 2-3, and are used in place of the equivalent-drag-area fuselage aerodynamic model.
The lag damper is modeled according to reference 11, page 5.1.10, and this representation is substituted
for the spring/damper model, The control mixer is modeled according to reference 11, pages 5.5.14 to
5.5.17, without the servo models. The tail-rotor parameters are extracted from reference 20, where a
detailed description of the UH-60A tail rotor is given. References 11 and 12 are used to extract other
physical parameters of the helicopter. Table 10 summarizes of all of the inputs to the model. The data
followed by a question mark are specified for each of the following correlations. From table 10 it can
be seen that the model has a flap-and-lag main rotor and a six-degree-of-freedom fuselage at constant
rpm. The dynamic inflow model is included, and the collective pitch, sine pitch, cosine pitch, and
tail-rotor collective pitch act as the inputs to the helicopter model. No feedback outputs are selected,
and accelerometer outputs are taken from the fuselage at the positions corresponding to those on the
flight-test vehicle,

Trim results calculated with and without the effect of the main-rotor wake in straight and level
flight are compared with experimental results in figure 33. The trim data were calculated at 25-knot
increments with the horizontal tail surface at the following settings: 400 for 0, 25, and 50 knots; 11.30
for 75 knots; and 40 for 100, 125, and 150 knots. The vehicle was trimmed by satisfying all six fuselage
force and moment equations, the flap and lag rotor equations, and the inflow equations (see table 10).
Between 0 and 50 knots, the angle Oz was fixed, while the angle 0,V was adjusted (i.e., if = 1, 2 in
table 10). Between 50 and 150 knots, the angle 0,r was fixed, while the angle 09. was adjusted (i.e.,
if -- 2, 3 in table 10). The collective, longitudinal, lateral, and pedal inputs are presented in percent
of total motion; the total motion is 10 in. for the stick inputs and 5.38 in. for the pedals. The model
tends to deviate significantly from the experimental data above 120 knots, where aerodynamic effects
such as dynamic stall and radial flow, which are not accounted for in this model, can become important.
Below 120 knots, good correlation is seen and the results are similar to those presented in reference 18,
p. 28. The lateral and longitudinal stick positions are predicted more accurately by the Ames GEN HEL
model, but the pedal position is closer for the model described herein, Overall, the results from the Ames
GEN HEL model are slightly better, probably because that model used tabular data for blade-section
aerodynamics, as well as other refinements particular to the UH-60A configuration. The flat-wake model
enhances correlation in all but the collective and lateral stick positions. The collective stick position is
hardly changed, whereas the lateral stick position is degraded by 1/4 in. at 150 knots.

Flight test time-histories from reference 10 are compared with the responses of the UH-60A model,
at 1 knot (figs. 34-37) and at 100 knots (figs. 38-41). Four sets of time-responses arc presented at each
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flight speed; they correspond to I in. adjustments to the collective, longitudinal, lateral, and pedal
inputs, The inputs to the model are those from the flight data, referenced about the trim of the model.
The trim values generated by the model are indicated by points c, e, a, and p, corresponding to the
collective, longitudinal, lateral, and pedal inputs, respectively. The angular rates of the fuselage (roll,
pitch, and yaw) and the accelerometer outputs from the fuselage (longitudinal, lateral, and vertical)
are also presented for each case. The accelerometer position corresponds to the approximate center of
gravity of the helicopter; the precise center-of-gravity location is given as POSFUS in table 10. Each
plot has three curves: the test data, the model response, and the linearized model response. The test
data are from reference 10 and the test numbers are identical to the numbers used in the reference. The
model responses come from integration of the full nonlinear system, and the linearized model responses
come from integration of the linearized model. The responses of the linearized model are added to the
trim values to give the total responses presented. Since the helicopter is in straight and level flight,
the angular rates are zero at trim, and the linearized responses are identical to the total responses. The
accelerometer responses contain gravity effects, and the nonzero trim values of the accelerometers must
be added to the linearized accelerometer outputs.

At I knot (figs. 34-37), the on-axis angular rates agree well with the test results. The off-axis
responses of the model do not correlate as well, with the pitch ,,xis being the most troublesome by
diverging from the test data in tests 212, 203, and 209. However, this is no worse than the results
from the GEN HEL model, which is refined specifically to the UH-60A configuration and includes an
engine model with a rotor rpm degree of freedom nnd actuator dynamics. At 100 knots (figs. 38-41) the
on-axis responses have fair agreement with experimental results, and again, these results are consistent
with results from the GEN HEL model, Other tests were run at 60 knots and 140 knots, and the results
show a strong similarity to the results from the GEN HEL model, Another source for comparison is
reference 16, in which the results of a linearized model are compared with the same flight data. The
results from reference 16 are also similar to results obtained with the model of this report. Taking all
these results together, it is concluded that the present model gives results that are consistent with those
obtained from the GEN HEL program and the linearized model of reference 16.

A final comparison is made of the linearized model with the eight-state quasi-static model generated
from the Ames GEN HEL program. The linearized GEN HEL model is generated with 0 = 27 rad/sec,
STI = ST" = STa = 29,583 ft, WLU = WLe = WLa = 20.683 ft, MF = 492.13 slugs, i~.0 = 0,
and cy = [0, 0, 0] rad. The linearized model of this report is generated and arranged according to

f, [= A t,. A 1 ,1 ] I l + B I.J (2 3 1 )i'f [Af 1, A/f f L/ Bf

Y cr f+ 4 (232)

The vector 1, contains all rotor states and inflow states, and the vector i/contains all fuselage states,
The inputs are the longitudinal, collective, lateral, and pedal positions (uT = [K•,, 6c, 6," b6]T). The out-
puts y are chosen to correspond to the states of the GEN HEL model (VT = [u , q, A •V, p, A, 'r,
For comparison with the GEN HEL model, the derivatives of the rotor and inllow states J.:,. are set to
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zero, yielding

4f - AredXf + BredU (233)

V= C-edif + D,.edV (234)

Ared AffI - Af1.A-. 1 At/ (235)

Bred = Bf - AfrA-rt Br (236)
Cred = Cf - CrA•r'Ar (237)

Dred D - CrA7'r.Br (238)

The state variables used to describe the fuselage motions are not precisely those used in the GEN HEL
model; however, the information needed to make the transformation to the GEN HEL states is found in
the equation

U ox

q 6Z
AO Rmx

y V = [Cred] !tny (239)

P Rmz
AO Ox

r OV

AO Oz
The quantities u, v, and w are the velocities along the fuselage, and p, q, and r are the body angular
rates. The quantities AO, AO, and AV are the pitch, roll, and yaw angular perturbations. With this
choice of output quantities, it is clear that Dred = 0, and thus equation (239) holds. Equation (239) is
then used to transform the model to the final form

U U

q q 6

d AO A 6WAa = F V + G 6a(240)

P P 6p

,r j r

where A-0 has been removed from the system.

This operation was carried out on a linearized model at 1 knot; the resulting F and G matrices
are presented in table II along with the system matrices from the Ames GEN HEL program. The
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eigenvalues and normalized eigenvectors are snown in figure 42 for both models. The calculations are
based on the F matrix represented in dimensions of feet, seconds and degrees so as to scale the angular
rates to an order of magnitude comparable to the velocities. Real eigenvalues have real eigenvectors
(figs. 42(d) and 42(e)); complex eigenvalues have complex eigenvectors composed of a real part and
an imaginary part. The eigenvector corresponding to the complex conjugate of the eigenvalue is the
complex conjugate of the eigenvector. The greatest difference between models arises in the higher
frequency modes, shown in figures 42(a) and 42(b). The model of this report tends to introduce more
coupling between roll and pitch than the Ames GEN HEL model, The mode in figure 42(c) is dominated
by w and r in both models, although the content differs. In figures 42(d) and 42(e) the two modes are
very close, although the damping is much higher in the model of this report. Differences in the damping
and frequencies of the eigenvalues are also noted; they are likely caused by the different inflow models
used in the two analyses. Selected Bode plots of the system are shown in figure 43. The 6 c/w plot
shows good agreement and the 61/r gain agrees well with the Ames GEN HEL model. The 3600 phase
shift in the 6p/r plot is due to a zero in the right half of the 8-plane that is not unstable in the modci of
this report. The sharp peak in the 6a/p plot is due to the light damping that is predicted by the Ames
GEN HEL model.

The entire process is repeated at 100 knots, resulting in the F and G matrices given in table 12. The
eigenvalues and eigenvectors are presented in figure 44; the eigenvectors agree more closely between
models in this case than in the 1-knot case. The on-axis Bode plots of the 100-knot case are given in
figure 45. The two models do not agree closely, but the general trends in the models are similar.

CONCLUDING REMARKS

A single-rotor helicopter mathematical model for the design of high..bandwidth flight control sys-
tems has been described. The flap, lag, and torsion rotor model allows the approximate modeling of
hingeless rotor systems, and the various hinge sequences that are available allow the modeling of many
different articulated rotors. Quasi-steady Greenberg aerodynamics are used in conjunction with the
nonlinear Pitt/Peters dynamic inflow model to calculate the blade aerodynamic forces. An rpm degree
oa freedom of the main rotor is available, along with a six-degree-of-freedom rigid fuselage. The tail
surfaces have main-rotor downwash effects that arise from the flat-wake simulation. Operations on the
model include trim, linearization, and time-integration, which have been formulated so that they may
be applied to any consistently cast rotorcraft mathematical model. This features allows for modification
of the helicopter model without requiring significant changes in the operations. Preliminary validation
of the model showed reasonable correlation with experimental and analytical results.

Further validation of the model is necessary. The higher order linearized models need to be
compared to experimental results, and flap-lag-torsion experimental data are needed to validate the
torsional effects of the rotor model. Also, additional work is necessary to extend the range of valid flight
conditions, which are cuirertly limited to low-speed, lightly loaded helicopter systems. The limiting
factor is the blade-section aerodynamic model, which should be improved to account for dynamic
stall, radial-flow effects, and compressibility effects. Finally, the linearization process is limited to the
helicopter mcdel itself. A useful additional operation would be the linearization of the remaining blocks
of the ,ystein and the ccmbination of these linearized blocks into a single set of system matrices.
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Table 1. Rotation sequences of blade coordinate systems

R to P P to L L to B

flpt 3 :-OR .3k:-YP k, L
Cýp : P zý p :- Ok + kl,: ic

fplt 3 p -OR ,13k :-yP L

Ok, :,•p: ,

pflt .p-OR ..3k, :-,0P (k•L
Ok X3ra ~ , -. Ok:,',

lftp 3p -OR ',k + ýp : .3k -OL
Cp :-•

Ok + Ok , ,1'

lpft .3p'. -OR ^P' . 3k
Ok ',,•c, CýP -

plft .3 p: -P C + ýp: -'P 3 k-L

pkýý

Table 2, Function odd/even properties

Function Even/odd (,•'1,i,-i) Equation number Figure number

(E,O,E) 2.10 2.15
_ (O,EE) 2.9 2.14

M (O,EO) 2.37 2.25
N (O,E,E) 2.40 2.26

0 (O,O,O) 2.38 2.28
K (O,O,E) 2.39 2.27
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Table 8, Flap-lag-torsion rotor nondimensional data

Variable Value Variable Value
Rotor Trim

1?b 4 - Rt 6
mass I MPTTRM 30

F0,0001 0 0 ]
rB 0 0.083333 0 ni 3r

0 0 0 0,083433 j
iof. 1 f(4) [S

Ii o I ail
-118 1 3• 3
R I
S1 3
,b 0.5 4
X 0 j, [1,2,31

if [21
a 2,' i1 [1,2,31

PA 4.8248 Jo [3]
do 0.01 IK [1,3,4]
K, 0.0024 [1,2,4.6]
IC, 0.088542
K.. 0,16333
_ Aif 38.1045
h 0,2

f TM

4 7



Table 9. Flap-lag rotor/fuselage data

Variable Value VariabIe Value
Rotor/fuselage Trim

nb 3 IHTRW 2
A1b 0,209 kg MPTTRM 30
R 0.811 m n j,, 2
Q rad/sec f(4) 0.01 n/sec

F0  0 0 1

IB [0 0.010069 0 kg m2  17j1  3L0 0 0.010069

mass 0 9(1.3) 00 rad
_ 'of f I fjo I
e 0,0851 m -n 1. 2
, 9.81 m/sec2 nfeq 2
i.Iero I j,. [1,2]
xb 0.186 m In [1,2,31
,) 0.726 m Jo [31
b 0.02095 m K [2,31
MPT 10 ie'l [1,2]
a 5.73 l/rad Linearization
P.4 1,2761 kg/m 3  H Lr• v 0
Twm 0.02618 rad MPTLIN 10
IOPT 1 I njý 2
do 0.0079 ) . [1,2]
IOPT2 3 nj• 2
ICv 6,691 kg m2/rad sec 2  j,. [1,2]
K ý. 30.659 kg m2/rad sec 2  ni, 2

Cu 0,003538 kg m2/rad sec II [1,2]

Cl: 0.007574 kg m2/rad sec ii 2
A.'fr 68.03 kg m2/rad sec 2  if [1,2]
Ki 104.3 kg m2/rad sec 2  3
Cf., 0.08117 kg m2/rad sec i [1,2,31
Cf Y 0.4200 kg m2/rad sec Ai, [l0, 10-5 rad/sec

0.183 0 0I[f.'0 0.633 0 kg m2  [10-6. 10-6] rad

0 0 0J
"--I. 20.83 kg [10-5. 10-5] rad/sec
h 0.241 in A.f [10-6. 10-6] rad

Ax.• [10-6. 10-6. 10-6]
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Table 10. UH-60A configuration data

Variable Value -Variable Value
UH-60A

nb 4 Mb 8,003 slug
R 26.83 ft Q ? rad/sec
,b 10.833 ft X 4.12 ft
X2 24.78 ft e 1.25 ft
a 5.73 1/rad b 0.865 ft
do 0.01 d2 1.2
Tw, 0.043595 rad Tul, -0.0112,8 rad/ft
g 32.1 ft/sec2  P.A 0.002030 slug/ft3

mass 0 M o f I
MPT 10 i.e ro I?
IOPTI 4 IOPT2 5

r0 0 0
IB 0 573.42 0 slug ft2  -iF ? slug0 0 573.421su t

STt 28.433 ft Sf 1 ft2

WLt 26.250 ft ST17, ? ft
as -0,05236 rad VL7, ? tt
STC ? ft 'F [?] slug ft2
WLe ? ft STa ? ft
MAXTR 40 IVLa ? ft
Pxc 1,22173 rad fTR 124.62 rad/sec
RTR 5.5 ft M1BYTR 0.467 slug
EPSTR 0.1D-3 Corn 0,01
bTR 0.40625 ft _rR -9920.8 slug ft2 /rad sec 2

.VbTrR 4 ý'l" -r R 0.7002
tTR 5.73 1/rad 8tTR -0,05458 rad/ft

iTR I ft -'b-r 2 ft
IbTn 3.0 slug ft 2  TRB,,k 0.8
WITL, 27.058 ft TRLoL'.' 0.7
ST,. 61.000 ft [OPT4 t
1.X [0,0,-1,5708] rad n 3
or [?,?,0] rad STS [58.367,58.367,57,917] ft
CL, [1.025,1.025,0.820] BL, [-3.5,3.5,0] ft
CLI [0.75,0.75,0.890] W1-1L [20.367,20.367,22.750] ft
C'L-2  [0.85,0.85,0.8001 STS [22.5,22.5,32.3] ft2

a D [0.262,0.262,0.1751 rad IOPT5 [?,?,?]
aD) [0.349,0.349,0.524] rad aO'rs [0,0,0.081 rad
0 D3  [0.524,0.524,0.698] rad hoTs [0.12,-0.12,0] rad

D4 [1.047,1.047,1,047] rad OTS [0.12,0,12,0.12] rad
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Table 10. Continued

Variable Value Variable Value
UH-60A

CDo [0.01,0.01,0.02] bTS [0,12,0.12,0.12] rad
CD" [0.1875,0.1875,0,043] CTS [0.5,0.5,0.51
CD2 [0.3625,0.3625,0.360] aL, [0.262,02262,0.349] rad
CD 3  [0,4250,0.4250,0.580] (ILI [0,524,0,524,0,436] rad
CD4  [0.9000,0.9000,0.8751 aL2, [0.786,0.786,0.6981 rad
CD5  [1.200,1.200,1.100] 1"L 0 -1.4 rad
fLo -0.4 rad ct..p 0.4 rad
apVPBvD 1A4 rad 3L 0 -1.4 rad
,3LO -0.4 rad IA' P 0.4 rad
.3UpRN 1,4 rad 3n,
"?m id 8 3ld

nmd 8 MPTDW 20
1 1.25 ft .2 26.83 ft

ADW 0.08 rad V•. [20,60,100,140,180,2201 ft/sec
n ,9W6 n .41 ,4  3

32.417 32.417 32.417
-2.5800 -2.5800 -2.5800

POSFUS 17.308 17,308 17.308
1 0 0

0 1 0
_ 0 0 1

Trim

""HTR, 3 f(4) groundspeed = ' ft/sc
it, [1,2] 'n7j, 2
if [?,?] Ilf 2
i [1,2,3] ni 3
JO 3 Ili 3
I [1,3,41 3
i [1,21 n1, 2

i eq [1,2,3,4,5,6,7] 11f e, 7
Linearization

a 10-5 MPTLIN 20
2 j,' [1,21

'.,., 2 j,. [1,21
6 f [1,2,3,4,5,6]

Nlj 3 f [1,2,31
ni, 3 i [1,2,31
"1 Jo 3
I K 3 I [1,3,4]
""01 i I
n~ti, 6 it [1,2,3,7,8,91
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Table 10. Concluded

Variable Value Variable Value
Integration

tfint 8 n ua 4
TOLINT 0.001 NPTINT 401

2 Jd. [1,2]
2 j?, [1,21

ni 6 .i [1,2,3,4,5,61

nfil 3 . [1,2,31
nil 3 i [1,2,3]
.I I Jo 3
"nh 3 K [1,3,41
n l) I iti (I]

6 i [1,2,3,7,8,91
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Figure 3, Rotor-hub-axis coordinate frame (H) and its transformation from the F frame.
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Figure 4, Fuselage wind-axis coordinate frame (W) anid its transformation to the F frame.
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Figure 5. Main-rotor coordinate frame (R) and its transformation from the H frame,
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Figure 9, Main-rotor forces.
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Figure 10, Blade-section chord coordinate frame (C).
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Figure 12, Actuator-disk coordinate frame (A),
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Figure 13. Tail-surface orientation and aerodynamic forces.
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Figure 14, Tail-surface drag coefficient break points.
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Figure 16, Tail-rotor orientation and aerodynamic forces.

69



Ay(-Zv)

Z• (,•v) FLAT WAKE

7x 1 '= 1 ji)

Vy

Figure 17, Flat-wake model coordinate system.
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Figure 20. Overview of operationls.
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BLADE BLADE

rrr ff xx 0 U

ISNROT IINROT

0 1 01

MBCT M BCT
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Figure 21, General input/output model structure used by tritn,linearization, and integration operations.
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Figure 22. General systern structure foi- integration.
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Figure 23. Flow of calculation to find the initial conditions of the system of figure 22.
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Figure 24. Flow of calculation to integrate the system of figure 22.
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Figure 27. Modal frequencies and lead-lag regressing damping data from the present model compared
with those from a flap-lag rotor/fusclage systemn at zero blade pitch,

80



-2,

00

BODY ROLLH

-2.0 
0 0

1. 0

0 1
-3,5

-3,0,BODY ROLL

-2.50

-2.0 go

Z8
Q-1.00

0 EXPERIMENT, REF. 9
5 ,- THEORY

0 200 400 600 800 1000
ROTOR RATE, rpm

Figure 28. Body pitch and roll damping data from the present model compared with those from a
flap-lag rotor/fuselage system at zero blade pitch.
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Figure 29. Lead-lag regressing damping data from the present model compared with those from a
flap-lag rotor/fuselage system at 9' blade pitch.
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Figure 30. Lead-lag regressing damping data from the present model compared with those from a
flap-lag rotor/fuselage system at various rotor speeds and blade pitches,
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Figure 31. Body pitch and roll damping data from the present model compared with those from a
flap-lag rotor/fuselage system at 650 rpm,
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Figure 32. Downwash from the wake model compared with experimental results.
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Figure 37, UH-60A model responses with 1-in.-left pedal at I knot.
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Figure 38. UH-60A model responses with 1-in,-up collective at 100 knots.
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Figure 39. UH-60A model responses with 1-in.-forward longitudinal stick at 100 knots,
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Figure 40. UH-60A model responses with I -in.-lett lateral stick at 100 knots.
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Figure 41, UH-60A model responses with 1-in,-right pedal at 100 knots.
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I knot.
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Figure 43. On-axis Bode plots of present model and Ames G3EN UEL model at I knot.
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Figure 44. Eigenvalues and cigenvectors of present model and Ames GEN HEL model at 100 knots.
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Figure 45. On-axis Bode plots of present model and Ames GEN HEL model at 100 knots.
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